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Abstracl Using a timedependent scattering theory for light we obtain expressions for 
lhe time that light spends in a finite dielectric medium surrounded by vacuum, Ihe 
socalled dwell time. Given an incoming wavepacket, we focus upon the light scattered 
in an arbitrary direction. In view of the similarity between Maxwell's equations and 
lhe Schradinger equation, some useful results are derived for the case of Schriidinger 
potential scattering as well. We show that the dwell time of a Schmdinger particle is 
a derivative of the phase shifts with respect IO the potential, rather than to energy as 
is the case for the phasedelay time. We indicale the relation to absorption arguments 
Because the potential for classical waves is energy dependent, derivativs of the phase 
shift wilh respect IO potential enter into the phase-delay time for classical waves. 

1. Introduction 

The dwell lime was first introduced by Smith [l] in the context of collision theory, 
and is sometimes also referred to as sojoum lime [2] or mean lime [3]. It is a concept 
that provides a measure of the time that some specified wavepacket 'spends' in some 
area in coordinate space. The nature of the wave can be either quantum mechanical 
or classical. The first case often addresses electrons in potentials, in the latter case 
one can think of acoustic or electromagnetic waves. 

The introduction of the rime delay by Wigner [4,5], was the first attempt to 
estimate how long a quantum-mechanical wavepacket is delayed by a scattering 
obstacle. The phase-delay time is expressed as a derivative of the phase shift 4 
of the scattering matrix with respect to energy, 

Later, Jauch et 01 [3] published an alternative but equivalent definition of time delay, 
namely 

In this formula 111,) represents the (normalized) quantum mechanical wavefunction at 
time 1 and I+!) is the unperturbed incoming wavepacket; xa is an operator projecting 
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onto a sphere of radius a in coordinate space. A subtraction of the incoming wave 
is not only physically plausible as a probe of time delay, it also guarantees that the 
limit a -, CO is finite. It was shown by both Jauch et a2 [3] and Martin [6] that 
this definition of time delay is, in essence, consistent with the phase-delay time put 
forward by Wigner. 
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Equation (2) suggests the definition of the following time: 

where C is some finite region in coordinate space. This time is anticipated to be 
linite if the wavefunction finally leaves the region C. This is typically true when the 
time-evolution operator has an absolute continuous spectrum. Following Martin 161, 
Buttiker [7] and other workers we will refer to this time as the dwell rime of C. The 
phase-delay time is readily expressed as the difference between the dwell time of the 
perturbed and unperturbed wavefunction for a very large region C. 

If this region C is the region B in which the potential is non-zero (and is 
assumed to be bounded for simplicity), the dwell time T~ should provide information 
about how long the wavepacket has spent inside the potential region. Especially 
near resonances the wave is trapped only inside B, and is essentially free outside. 
Consequently, any delay is expected to be contained in both the dwell time T~ and 
in the phase-delay time T~ The similarity between both times also becomes apparent 
by the notion (as will be shown in this paper) that the dwell time T~ for SchrOdinger 
particles, as defined in equation (3), is in fact a derivative of the same phase shift 
of equation (1) with respect to the potential, rather than energy. On the level of 
t-matrices, we demonsaate that a small imaginary part of the potential (resembling 
the presence of an additional stationary scattering channel) yields a very convenient 
expression for the dwell time. 

'Iteating the Maxwell equations as a set of first-order differential equations, it 
will turn out that, apart from some extra bookkeeping, the procedure to define 
dwell times for light is similar to Schrodinger potential scattering. An important 
intrinsic difference from the SchrCidinger equation, namely the presence of an energy- 
dependent potential, will be discussed in relation to the Jauch formula (2) and a 
recently discovered decrease in the speed of light in media containing randomly 
placed resonant dielectric scatteren [8,9]. The energy dependence of the potential 
causes derivatives with respect to potential to appear in the phase-delay time Cor 
classical waves. 

The time-delay problem has recently been given renewed attention. It was realized 
that the phase-delay time is not capable of giving a reasonable estimate of the delay 
caused by a tunnelfing process. The (monochromatic equivalent of the) phase-delay 
time in'equation (1) is known to saturate in the extreme opaque limit, thereby giving 
rise to an (apparent) violation of Einstein causality. Some alternative 'characteristic 
times' have been put forward, among which the Landauer-Buttiker time [lo] and the 
Larmor time [7] are the most important [ll]. The latter is obtained by probing the 
spin precession of a (tunnelling) electron. In a recent paper Martin and Bianchi [12] 
demonstrated very elegantly that the (asymptotic) Larmor time and the phase-delay 
time, in fact, coincide. The Landauer-Buttiker time, on the other hand, emerges from 
considerations pertaining to an oscillating barrier [13]. It seems that the characteristic 
time proposed by Landauer and Biittiker could be referred to as an inferaction rime 
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and does not necessarily probe the time that a wavepacket is being delayed. Rather, it 
estimates the time of interaction with an additional dynamical degree of freedom. If 
this is true, it is not at all clear that different (proposed) experiments [14-16] actually 
deal with the same time. 

In this paper we will not make any attempt to shine new light on the interaction 
time. Rather, the purpose of this paper is to arrive at general results for the dwell 
time. In the next section we discuss the situation of Schrodinger waves in one 
dimension. In section 3 we outline a time-dependent theory for light scattering. This 
theory is used in section 4 in order to deal with the dwell time of light in three 
dimensions. We will focus upon the concept of conditional dwell time. This is the 
dwell time of a specified part of the wavepacket, for instance the part that finally 
emerges in some small solid angle. In section 5 we derive a 'Jauch formula' of the 
kind (2) for scalar waves. 

2. Dwell times for 1D Schrtidinger particles 

The Schrodinger equation in one dimension is the simplest equation that mimics most 
relevant physics with respect to the dwell time. For this case, we will introduce the 
concept of conditional dwell time, in order allow for a comparison to the Maxwell 
situation. 

Given a time-dependent solution I&) of the Schrodinger equation, the dwell time 
has already been defined in equation (3). The projection operators P, are defined 
according to 

(PlP,l+) = @(*P)+(P)  (4) 

with associated eigenspaces %*; the function O ( p )  is the Heaviside step function. 
If we assume that the incoming wavepacket is originally in X,, these eigenspaces 
correspond to the reflection (-) and transmission (+) channel. In terms of the 
S-matrix, the asymptotic solution of the Schrodinger equation is given by 

The asymptotic reflected and transmitted pan of the wavefunction are obtained by 
projecting the solution at  t + m onto the corresponding eigenspace. Translating back 
to finite times we arrive at 

Id+(t)) = Q,. exp(-iHut)S++I+U) (6) 

I+R(t)) = at exp(-iHUt)s-,l+"). (7) 

R, = tjymexp(iHt)exp(-iHot) (8) 

For brevity S,, G Pt SPt, S- ,. P- SP,.. In terms of the Moller wave operators, 

the S-matrix is given by S = i2;0-. We can define the Iransmission and reflection 
time as 
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C is an as yet unspecified bounded region in coordinate space with projector xc. 
The integrand of equation (9) is interpreted as the probability of finding the particle 
in C at time t ,  provided it finally emergcs in either the transmission or rencction 
channel. As such, we shall refer to the times rT and T~ as conditional dwell times 
for both channels. Recently, a similar conditional variant of the phase-delay time was 
presented in [17]. 

The definition in equation (9) can be worked out formally by insertion of the set 
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UP)), satisfying Hub) = P'IP), and 

where E, E 1 dp/2n. The S-matrix takes the form 

(P'ISIP) = 2 n 6 ( ~  - p')TP + 2 ~ 6 ( ~  + P')R, (11) 

Rp and T are the complex reflection and transmission coefficients at energy E = p2. 
The unitahy of s gives rise to 

lTplz t [RpIZ = 1 T,'R-, t R;T-, = 0. (12) 

It can be checked that 

(PlS++l$") = @(P)T,$"(P) (PIS-+l$u) = Q(-P)T-~+"(-P). (13) 

The numerator of the transmission time can be worked out to 

The time integral yields a factor 2?r6(p2 - p") and brings the conditional dwell times 
on the energy shell. We define the matrix element 

'YppdC)  = (P l~ ;Xcf i t IP ' )  E (v-(P)lxclio-(P')). (14) 

Since RtH, = HQt it formally follows that IqT(p ) )  3 R,(p) is a continuum 
eigenfunction of H at eigenvalue p2, which (again formally) satisfies, by the isometly 
of the wave operators, continuum normalization. This set of eigenfunctions is 
usually referred to as distorted incoming (-) or outgoing (t) planc waves. The 
proper justification for these formal manipulations requires results from the theory 
of 'generalized eigenfunction' expansion of Schrodingcr operators [18]. 

The transmission time now becomes identical to 

Similarly, we obtain for the refleuion time, 
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The total dwell time (without projections upon any outgoing channel) is 

The thud term amounts to an interference between the reflecting and transmitting 
part of the wavefunction inside the region C. From now on we shall take C to be 
equal to the support B of the potential. Before we proceed, we note that 

(~t(P)lXBl~t(P')) = (P-(-P')lXBlP-(-P)) (18) 

Tp = T-,. (19) 

These identiIies follow from the time-reversal symmetry of the Schrodinger wave 
equation. The following formulae relate the matrix element W p p , ( B )  to the 
transmission and reflection coefficients, 

We have taken B = [0, d ]  and p, p' > 0. The derivation runs as follows. For p > 0, 

erPT + R,e-'P' r < O  

TpeiPr r > d.  
(rlP+(P)) = B,(4 O < r < d  (21) 

d 

i 
Since 

( P ~ ( P ) I P  (PI) = 27" P') 

(200) follows by simple integration, thereby applying equation (18). If p < 0, 

(22) + I  \ ~ - ,J , - , (B )  = / drB; (p )Bp , ( r )  
U 

eipr  + Rpe-br r > d  

(.lP+(P)) = BP(4 O < T < d  (23) i Tp eipr r < 0. 

and (2Ob) follows similarly. 
The phase shifts &(p) and &(p) are defined according to'T, = IT,Iexp(i&), 

R, = IR,Iexp(i+,). In what follows, we focus on inversion symmetric (IS) potentials: 
V ( r )  = V ( d  - 7 )  [19]. One can check that inversion symmetry implies 

R, = R-,ezipd W,,,( B) = W-p,-p,( B)e'(P'-P)d (24) 
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From the reciprocity relation (12) one infers immediately that 
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Re T' P P  R e-ipd = 0 (E) 

so that +R = & + pd (mod T ) .  Hence, 

From equation (20) the following results for inversion symmetric potentials can be 
obtained straightforwardly, 

I m R  
W p p ( B )  = p + -. d+ 

P dP 

Near resonances d+/dp is large and the dwell time of the potential region (being 
equal to Wpp(B)/2p) and the phase-delay time d+/dp2 are approximately equal. 
The additional term in (27a) is caused by self-interference outside the potential region 
Ill], where the wave would have been classically free. By using proposition (27a) an 
eigenfunction analogy of the Jauch formula (2) can be obtained. With E, = [ -a ,  a ] ,  

We give a formal proof of equation (28). Apart from U',,( B,) in equation (20) 
the Jauch formula contains the free contribution W':p and the integral outside the 
barrier. %gether this amounts to 

Using equation (27) this adds up to the result in equation (28). The exponent 
exp(2ipa) vanishes in the weak sense. 

In the context of the Jauch formula, we mention that a similar formula can be 
derived for the matrix element Wp,-p. Restricting again to the case of inversion 
symmetry, it follows from equation (27) that 

The free contribution W&,([-m,m]) = 0. We remark that equation (27b) together 
with equation (E), implies that RpT; WP,-?( B) is purely imaginary. This means 
that the interference term in the total dwell time equation (17) vanishes. Hence, 
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In the plane-wave limit we let I+u(p)lz i 6(p-k). For IS potentials one thus obtains 

We conclude that the ‘transmission time’, the ‘reflection time’ and the ‘unconditional 
dwell time’ coincide in the plane-wave limit for IS potentials. Because this time is 
expressed in terms of the matrix element W,,(B), we expect that knowledge of 
the matrix element W k , - k ( E )  reveals extra information about the potential. This 
is an interesting observation since the term between parentheses in equation (29) 
seems to be related to the complex-valued Landauer-Biittiker interaction time 
T~ - -id(logTp)/dpZ [13]. We will not deal with this issue any further. 

In the appendix we find another representation for W,.(B), as well as a 
generalization to three dimensions. There we show that 

Here 6: denotes a functional derivative with respect to the potential V(r) in the 
direction [ ( r ) .  The characteristic function of the potential region E is again denoted 
by x B ( r ) .  The first equality is in complete agreement with equation (29)  of [12]. 
The second equality is obtained by the introduction of a small imaginary part of the 
potential in the reflection and transmission coefficiena. Such a procedure cannot, in 
general, be justified in time-dependent situations (see, however, Kato [ZO]), but here, 
on the level of transition matrices, there are no such problems. The outcome is very 
convenient for numerical computation. 

Another useful result derived in the appendix is that if V ( T )  = Vug(?-) is the 
potential, then 

Only the rectangular potential (for which g(r) = xB(?-)) has the special property 
that derivatives of the phase shift with respect to Vu equal the  dwell time [7,21]. We 
conclude that the dwell time of the potential region E is a derivative of the phase 
shifts with respect to the potential in the direction of the characteristic function of 
E. The phase-delay time, on the other hand, is a derivative of the same phase shifts 
with respect to energy. For Schrodinger potential scattering, both time scales coincide 
approximately near resonances [7]. 

3. Time-dependent scattering theory for light 

The usual approach to dealing with Maxwell’s equations is to eliminate either the 
magnetic or electric field component In the absence of ohmic currents and magnetic 
interactions, this procedure gives the Helmholtz equation, 

V x (V x E )  + E ( + ) @ E  = 0 (34) 

in which C ( T )  is the dielectric permeability. The local speed of light is given by 
C ( T )  = E ( + ) - ’ / ’ .  The Helmholtz equation bears a strong resemblance to the scalar 
wave equation: 

- V2$ f e(T)a,”@ = 0. (35) 
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By the absence of polarization, the latter is much easier to deal with, especially in 
the case of multiple scattering. The scalar wave equation, in turn, is very similar to 
the Schrodinger equation, 

B A  van Tiggelen el ai 

- v2+ + v(r)li,  = iat$. (36) 

By insertion of monochromatic waves, $ - exp(-iEt), E playing the role of 'energy' 
in the quantum mechanical picture, and of 'frequency' in the scalar wave equation, it 
is seen that equations (35) and (36) are, in fact, identical, provided one identilies for 
scalar waves an energy EZ > 0 and an energy-dependenf potential 

V ( T ,  E )  = 11- €(T)]E2. (37) 

For E(.) > 1 this potential is negative and thus attractive. In the presence of 
randomness in the dielectric constant E(.)  this energydependency was recently shown 
to give a substantial renormalization of time scales in macroscopic (diffusive) transport 
of light, nor present if similar randomness is imposed on the electron potential V ( T ) .  
The stutionuty properties of both equations, on the other hand, are equal in the sense 
that there is a one-to-one correspondence of (continuum) eigenfunctions. 

To arrive at a time-dependent treatment of light scattering, the secondader time 
derivative is inappropriate, and the original Maxwell equations, being first order in 
time, are preferable to the Helmholtz equation. The framework of this theory was 
published recently by Dorren and one of us 1221. Equivalent timedependent theories 
for classical waves are known from literature [23-251. Therefore we will restrict 
ourselves to an overview of the most important results for our purposes. 

We interpret E ( T )  as a positive, real-valued operator. With the operator 
r = c1/* and the sixdimensional state vector, 

the Maxwell equations take the convenient form, 

i a t lE t )  =&. IZ,). 

The time-evolution generator K - is given by [22] 

(39) 

In this equation, (E. p ) i j  = CI, c i j k p k  where c;jk is the Levi-Civita tensor density 
being anti-symmetric in all indices with the convention that crz3 = 1. This time 
evolution conserves transversality (V . B ( l )  = V. D(1) = 0), as well as the total 
electromagnetic energy, 

We introduced the scalar product according to 
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The associated Hilbert space is X: = L2(R3,dT,C6), consisting of square-integrable 
six-dimensional vector fields on R3. With respect to the inner product above, K 
is a symmetric operator. The free time evolution &, obtained by setting r =T 
has an absolute continuous spectrum covering the whole real axis, and an imbedded 
eigenvalue zero corresponding to the longitudinal subspace Kt  in IC. The continuum 
lrumerse generalized eigenfunctions of Ku - at the eigenvalue E are 

We observe a threefold degeneracy: two angles fixing the direction of propagation 
L, and one index j representing two mutually orthogonal (normalized) choices for 
the polarization vector g. By transversality both these vectors must be perpendicular 
to the vector 6. The set of generalized eigenfunctions in equation (43) satisfies 
continuum normalization 

(j6, E l j ' k ,  E') = ( 2 7 ~ ) ~ 6 ~ ~ , 6 ( E  - E')6(& - 61) (44) 

where EU E Apg is the projector upon the transverse subspace X:' in IC. We use the 
notation CjkE = ( 2 7 ~ ) - ~ J  d E J  dkCj=*l. As usual the Meller wave operators 
are defined as 

=* i7 = s - t-*m lim exp(il(t). - exp( - iKot)  - . I&. (46) 

In terms of the wave operators, the scultering operatw can be defined as S - = Q* --+--. .Q 
When the wave operators exist and are complete, the S-matrix is on-shell, S .  _ _  L(, = 
go. g ,  and unitary, S* - -  . S = S .  _ _  S* = g,. It has the formal representation 

S = H, - 2 n i l i m ~ , .  6( E -go) . g ( E  t ie) .&(dE) 

T(Z) - = - -  vt v. [ z  -KJ-'.v. - (4) 

q k j t k , ( E * )  = 2E(jk,  E 1 T ( E + k ) [ j ' k , E ) .  - (49) 

(47) 
r/U - J - -  

where E (dE)  = d E  Cih IiL, E)(&, El. The transition operalor is 

For future use we construct the t-matrix or scattering amplitude Tjk j rk , (E*) ,  

Here k = E&. A straightfonvard algebraic manipulation of the scattering amplitude, 
using the explicit form of the eigenstates Ij6, E) &en in equation (43), yields for 
the scattering amplitude the convenient representation, 

in which 

=U 

qk j ,k , (~*)  = (E.&/g; . ~ ( ~ f i c ) . g ~ , l ~ L ' )  (50) 

T(z) = @zz + @ z 2 .  [ zz  - $Ap - k2]-'. @ z 2 .  (51) 
T( z )  is an operator working on three-dimensional vector fields. It has properties 
of a transition operator, corresponding to an energv-dependent, in general complex 
potential @z2 = [l - C ( T ) ] Z ~  and complex energy 2'. Indeed it can be viewed as 
the t-matrix of the Helmholtz equation (34). 'Ib our satisfaction, we observe that a 
time-evolution treatment of Maxwell's equations brings us back to the analogies with 
the SchrCidinger wave equation mentioned at the beginning of this section. 
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4. Dwell times for light 

The time-dependent scattering theory sketched above will now be applied to define 
and work out the dwell time in the Maxwell picture. Given a region B in 
coordinate space with projector x B ,  and an electromagnetic wavefunction I&), the 
dimensionless quantity 
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is the relative amount of energy in region B at time t. We expect that I.l$(t) - 0 
for t 3 f m ,  because the wavepacket has either not yet reached or already left the 
region B. By energy conservation, the denominator in equation (52) does not depend 
on time. We can define the total dwell time as 

In terms of the S-matrix, the asymptotic solution of the scattering set-up, satisfying 
our constraints for both t - f m  is 

Thus at finite times, as in section 2, 

where equation (46) has been inserted for the wave operator. In addition gJi = 
9, . g .  gi. The condifional dwell h i e  can now be qefined according to 

in which 

rvB(t,i*f)= ( E t ( i - f ) l E t ( i - f ) )  
- - ( E  U *  IS;, . e x p ( i ~ ~ , t ) . g > x ~ g +  . e x p ( - i ~ ~ ~ i ) . ~ , ~ I ~ " )  

W(i3f)=(FOlS,.,.SfilFU). (55) 

A similar approach holds for the Schrbdinger wave equation in three dimensions. We 
can work out this expression by insertion of the plane-wave set equation (45). The 
numerator becomes 

D,(i - f )  = d t  ei(E-E')t 

RAE n8hfE' -m 

x In,&, E)(&, ElQ* --+ x B=+ ~ n ' k ? , E ' ) ( n ' ~ ' , E ' ~ ~ , . ~ E " ) .  (56) 
- I f  
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The time integral gives a factor 2?r6(E - E'). We construct the matrix element W 
in terms of the incoming distorted plane waves ['pih( E)) mentioned earlier, 

( V P , ~ ( E ) I X S l ' p ~ , ~ , ( E N  = W,k,,b, ( B, E) .  (57) 

The S-matrix 
equation (43) to give 

(nk, EIS ,In%', E') 

equation (47) can be sandwiched between the plane waves in 

= x f ( n k ) x i ( n ' k ) 6 ( E -  E')  6,,,6(k - k )  - -Tnkn,k,(E+)] n i  (58) 

where we have used the &matrix T,,k, ,k,(E+) defined in section 3. Equation (56) 
now becomes 

1 E 

%(i -* f )  = 2?r x ; ( n k ) x f  (n'h')W,,,,,,(B, E )  
n6 nli? 

d E  

We have written I i ( n k )  = (nG, EIE"), and introduced the scattered amplitude in 
the channel nk as 

For simplicity we have assumed that the incoming wavepacket satisfies our constraints, 
i.e. I@) E .K. Equation (55) can now be written as -* 

This is recognized as the sum of a 'coherent' wave (i.e. propagating in the forward 
direction), a scattered part and the interference between them. Both in equation (59) 
and equation (61) we supposed that the initial wavepacket has support only in a small 
frequency range dE.  Because the S-operator is on the energy shell, the asymptotic, 
scattered wave has the same support. The solution for a non-monochromatic 
wavepacket is recovered by integrating over frequencies E. 

By combining equations (59) and (61) the conditional dwell time can be found. 
Starting from these general equations we can proceed by taking x i ( n b )  = 6,;0(k E 
dR,) and x , ( d )  = 6,,0(k E dRf) ,  thereby squeezing both the solid angles dR, 
and dR f .  Any small solid angle can be considered as a scattering channel. By 
definition, the coherent channel is the channel in which the forward propagating wave 
is present: dRi = dR ,, m = i. A scattering channel is a channel in which there is no 
contribution from the forward propagating wave: dR, n d.Q = 0 or j # i. We get 
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We come to an unexpected property of the monochromatic limit: the conditional 
dwell time in a specific channel depends only on the orientation of the solid angle 
under consideration with respect to the dielectric scatterer B. The history, that is the 
channel through which the wavepacket originally entered, is completely forgotten! As 
in the Schriidinger situation, we infer that knowledge of the conditional dwell times 
requires information about the ‘diagonal’ matrix elements Wmrne(B) only. If the 
barrier has rotational symmetry, all channels, including the coherent channel, have 
the same conditional dwell time. This is no longer true beyond the monochromatic 
limit. 

In the absence of symmetry, a dwell time averaged over outgoing channels can be 
constructed as 

B A  van Tiggelen et a1 

We have introduced the wavelength X = 27r/E, and the volume 1’’ of the region B; 
W( B, p) is identified as the averaged, normalized electromagnetic energy density in 
the region B (in a stationary situation). 

Having found the (average) dwell time per scattering channel we discuss the 
following heuristic, but nevertheless very important charging rime. In case the 
scattering region B is large compared to the wavelength A, one can use the ray 
concept to visualize the scattering process. In this picture (figure 1) the incoming 
plane wave is considered as a collection of open input channels (‘rays’), which have 
typical size A/2n. If a ( E )  is the total scattering cross section, the numbcr of open 
input channels is estimated as a ( E ) / x ( A / 2 ~ ) ~  = 4nu(E)/AZ. The average dwell 
time per open channel is called the charging time. By equation (63), 

Since equation (64) takes into account the two-dimensional degeneracy of the 
incoming wave, the charging time rather than equation (63), is expected to give 
an estimate of the time spent by the light in the region B. 

/ 
2 

n( k I 2 X )  

--------L 

Figure 1. The ray picture for lighl scattering. 
The incominp. plane wave is considered as a _ .  
collection of input channels of ‘extent’ X / Z r  
which can be either opened or closed. The 
numbcr at open channels N is estimated using \ N ~ ( X j 2 r ) ~  =U. 

The degeneracy problem can be handled rigorously for rotationally symmetric 
scatteren. In that case a partial wave analysis can be made, and a subsequent 
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projection of the scattered wave upon the subspace with specified 'rotational quantum 
numbers' n and 1 can be carried out. It is known [26] that for high frequencies such a 
partial wave treatment goes over into the ray concept mentioned above. To calculate 
W ( B ,  E) the eigenvalue problem has to be solved. For the Mie sphere the solution 
can be found in almost any text book on light propagation. The corresponding energy 
density for such sphere can then be calculated straightforwardly. The dwell time for 
a partial wave with principal quantum number n is, similarly to equation (63), 

(65) 
47r 

Tg( E )  = 3 V B W " (  B ,  E )  n = 1 ,2 , .  . . 

and does not depend on the magnetic quantum number. 
W"( B , p )  is conveniently written in the form (27 

The energy density 

Rea, - la,IZ Reb, - Ib,I2 
W " ( B , E )  = -- lim t 

3 m  4 13 *.-U ( mi mi 

(66) 
3m + ;3s(ldn12 - I%IZ)~,(mz)!%(m~). 

Here z = Er,,, is the size parameter, &(z) zj,(z); a, and b, are the standard 
(Van de Hulst) coefficients for the Mie sphere [26]. The parameters c, and d,, 
instead, characterize the electromagnetic field inside the sphere. In equation (66) a 
small absorption (or gain) mi 2 Im m has been introduced, similarly to equation (32). 

(a )  m = 2.73 (b )  m = 0.75 
60 

40 

20 

0 
I 

IMPACT PARAMETER b = (Nt  1/2) h/2 [r,] 

Fiure 2. (U) Conditional dwell times per partial wave for a Mie sphere with index 
of refraction m = 2.13. The horizonlal axis is labelled with the 'impact parameter' 
b = ( n  + 1/2)X/2rr in geometrical optics, where R is the principal quantum number 
of the partial wave under consideralion. Some specific values for n are plotted; bold 
n = 10, dashed n = 2. (b) As in (a) but for an index of refraction m = 0.75. The 
critical impact parameter is given by b,,i, = m beyond which one expects, according to 
ray optics, lotal reflection off the sphere. 
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Figure 2 shows the evaluation of this expression for an index of refraction 
m = 2.73 ('attractive') and m = 0.75 ('repulsive'). The horizontal axis is labelled with 
the parameter (n + 1/2)X/25~, which can be recognized as the 'impact parameter' in 
the ray picture 1261 and is inversely proportional to the frequency. The pronounced 
peaks correspond to shape resonances, i.e the wave is trapped inside the Mie sphere, 
and a standing wave is built up. In some cases the dwell time exceeds the 'free 
time' rm/cu by two orders of magnitude. Some very strong peaks arise for impact 
parameters (n + 1/2)X/2n > r,. This means that they are geometrically forbidden 
in the sense that rays with these impact parameters are not expected to be captured 
by the sphere. 

These enormous dwell times will introduce a delay every time a scattering process 
takes place. In the case of multiple scattering, such a delay accumulates and becomes 
macroscopic (of the order of the mean free time), thereby giving rise to a decrease 
in the speed of light [8,9]. 

We draw attention to a very convenient relation between absorption and dwell 
time, apparent from equation (66). Summing this result over all partial waves yields 

3 m  
8 x mi-u mi 

W ( B ,  E )  = -- rim Qabr + rest 

where Qak is the Quality factor for absorption, and is the absorption cross section 
normalized to nrk. The rest term is known explicitly, but turns out to be negligible 
near resonances. Accordingly, from equation (64) we obtain for the charging time, 

We introduced the albedo a of the scatterer, a 1 - Qabr/QE. Equation (68) 
can be reproduced heuristicaly [9]. Physically, it expresses the fact that the longer 
the light spends in the dielectric barrier, the more it will suffer from absorption. 
A similar, but aacf  formula can be derived for the case of SehrCIdinger potential 
scattering (appendix). The rest term in equation (67) is a manifestation of the so- 
called 'logarithmic derivative', causing different boundary conditions for the TE and 
TM modes in the sphere. The TM mode (with t-matrix a,,) is influenced by this term. 
The logarithmic derivative is absent for the "E mode. 

5. A Jauch-type formula for scalar waves 

In principle, our dynamic approach to the Maxwell equations in equation (39) is 
suited to formulating a Jauch formula for light. Although only valid for SehrCIdinger 
potential scattering, the proof of this formula given by Martin [6] shows its validity 
under very general conditions. We will not deal with polarization effects here. Instead, 
we derive a Jaueh-type formula for the scalar wave equation (39, making use of the 
analogy of Schradinger particles and scalar waves mentioned earlier; 

kRet, ,( let)+/dt '  It "'( k )"w = lim [W,,(B,)-W;,(B,)]. 
2kZ d k (45~)' dk  a-m 
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In this formula W,, is the scalar counterpart of the definition equation (57), B, is 
a sphere of radius a and tkk,(kt)  is the on-shell t-matrix associated with the scalar 
wave equation, and should, in turn, be considered as an analogue of equation (51). 
The left-hand side of equation (69) is proportional to the monochromatic phase- 
delay time in three dimensions, the first term being the contribution of the coherent 
channel, and the second term a summation over all scattering channels. Equation 
(69) can be derived as follows. 

In the scalar wave equation (35) $ plays the role of vector potential where the 
‘electric component’ is at$ and the ‘magnetic component’ V$. A$ mentioned in 
equation (37) we identify the ‘energy’ as EZ and the ‘potential’ as [l - e(v)]@. 
Having found the off-shell t-matrix t,,,( E+,  V,) from the Schriidinger eigenvalue 
problem with potential VOg(r) ,  the t-matrix of the scalar wave equation is 
t,,,(E2, &(E)) .  Letting E = k gives the on-shell t-matrix as above. The validity 
of the Jauch formula for Schriidinger particles guarantees that the partial derivatives 
at ‘constant potential’ give 

pk being a normalized continuum eigenfunction of the Schriidinger equation at 
eigenvalue E = k2. On the other hand, it is shown in the appendix, in combination 
with equation (62), that the derivatives with respect to V, equal 

Since & ( E )  = E’ we have d/d(E2) = ( a / a E * ) ,  -!- 8/04 so that we obtain for 
the left-hand side of equation (69), 

This is recognized as the inner product (energy) for scalar waves 1281 and equals, 
by definition, the right-hand side of equation (69). The last equality follows from 
V . (p*Vp) = lVplz - E2e(~)lpp1z for any p ( ~ )  obeying the time-independent 
scalar wave equation. 

6. Conclusions 

In this paper we have formulated the concept of a conditional dwell time. In one 
dimension a conditional dwell time probes the time that a wavepacket spends in the 
potential regionprovided it finally emerges in either the transmission or the reflection 
channel. For inversion symmetric potentials and in the monochromatic limit the 
conditional dwell time for both channels coincide with the ‘unconditional’ dwell time. 
All are given by the integral Wkk( B) of the square of the continuum eigenfunction 
at energy E = ICz  over the potential region B. This matrix element was shown to be 
a (functional) derivative of the phase shift of the S-matrix with respect to potential, 
and is also intimately related to absorption arguments. It follows that Wk,-k( B )  
provides additional information about the dynamics in the potential region. 
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Using a time-dependent theory for light propagation, we obtained expressions 
for the conditional dwell time for light emerging in an infinitesimal solid angle. We 
observed that a first-order dynamic approach to Maxwell's equations is consistent 
with the notion of an 'encrgydependent potential' in the classical (second-order) 
wave equations. This energy dependence makes the dynamics of light different 
from Schrildinger dynamics. In particular, derivatives with respect to potential enter 
into the phasedelay time of classical waves, making delay much more pronounced 
than in the quantum mechanical picture. We pointed out that the energydependent 
potential is consistent with the different conserved quantity associated with classical 
wave motion. A Jauch formula for classical waves is discussed in this context. We 
recently showed that the different conserved quantity in the classical wave equations 
gives rise to a substantial renormalization of the transport velocity in random media. 

Acknowledgments 

We thank an unknown referee for his many constructive suggestions. This work is part 
of the research programme of the 'Foundation for Fundamental Research on Matter' 
(FOM) and was made possible by financial support of the 'Nederlandse Organisatie 
voor Wetenschappelijk Onderzoek' (NWO). 

Appendix. Dwell time in quantum mechanics 

In this appendix we derive an expression for the dwell time in the case of Schrbdinger 
potential scattering. Starting with the Schrodinger wave equation with a complcx- 
valued potential, 

i v + ( r , t )  = -v*+(T,t) t V ( T ) + ( T , ~ )  

~ f l + ( ~ , t ) l ~ +  V - J  = Im\/(r)I+(T,t)lZ (70) 

we obtain the well known equation of continuiy, 

with J = Im$PV+. Finally we take the limit of the vanishing imaginary part. We 
define the linear functional, 

where g(r) is real-valued and has compact support If Im \'(r) = yg(r) we get 

By Gauss' theorem, the surface integral can be performed on any sufficiently smooth 
closed surface surrounding the support of g. We shall work it out in three dimensions. 
The asymptotic (outgoing) solution of the Schrbdinger equation is, in terms of the 
scattering amplitude fk(S), 
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with 0 King the direction of T.  It follows, for T -+ CO, 

m 

d t i . J ( ~ , t )  = n R e x 6 ( k -  k ' )$o (~)*$u(k ' ) [ e i (k ' -k ) ' ' (P~6 ' )  
Irk' 

Making use of the formal identity, 

where c = cos 8, we finally obtain 

1 @[g] = rrlim - R e ~ $ o ( k ) ' @ o ( k ' ) 6 ( k -  k ' )  
W l U  kk' 

This is further simplified by concentrating $"(k) in the element dkdR, while retaining 
its normalization. Upon introduction of the functional derivative [29] 

where [ ( T )  can be complex-valued, we arrive at 

Here Ifb(1')lz/(4rr)2 du/dR, the differential cross section in the direction 1'. 
Equation (75) can be recognized as a derivative of the absorption cross section with 
respect to the imaginary part of the potential, similar to equation (67). Using the fact 
that fk depends functionally on V(T), whereas f; depends on its complex conjugate, 
this can also be written as 

Here ,$(i) is the complex phase of the l-matrix in the direction i. Alternatively, 
equation (76) can be obtained from equation (75) by application of the Cauchy- 
Riemann equations. In one dimension there is no solid angle degeneracy and the 
result reads 

@[g] = -;6$[1- IR(k) I2-  IT(k)1'] = -IR(k)1264,C$R - 1T(k)1269,C$T. (77) 

Here R( k )  and T( k) represent the complex reflection and transmission coefficients; 
dR and C$T are their phase shifts. 
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We discuss two relevant choices for g. First, we can take g ( r )  equivalent to the 
characteristic function x B ( v )  of the potential region. Then 

where T~ is the dwell time analogous to equation (53). We conclude that the dwell 
time can be formulated in terms of a functional derivative with respect to the potential 
in the direction of its characteristic function. Another very interesting option is 
obtained by choosing g such that V ( T )  = &g(T). The functional @ [ V ]  represents 
the potentia1 energy integrated over time. Now the functional derivative 6; reduces 
to an ordinary derivative d/d&. Going to the plane-wave limit of @[VI in three 
dimensions, yields, in combination with equation (76), 
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